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bstract

The photo-oxidation of acid orange 52 dye was performed in the presence of H2O2, utilizing UV light, aiming the discoloration process modeling
nd the process variable influence characterization. The discoloration process was modeled by the use of feedforward neural network. Each sample
as characterized by five independent variables (dye concentration, pH, hydrogen peroxide volume, temperature and time of operation) and a
ependent variable (absorbance). The neural model has also provided, through Garson Partition coefficients and the Pertubation method, the

ndependent variable influence order determination. The results indicated that the time of operation was the predominant variable and reaction

ean temperature was the lesser influent variable. The neural model obtained presented coefficients of correlation on the order 0.98, for sets of
rainability, validation and testing, indicating the power of prediction of the model and its character of generalization.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The most common dyes present in industrial wastewaters,
articularly in the textile ones, are the azodyes (60–70% of the
orld production), which are defined as composites with one or
ore –N N– bonds, known as chromophore structure, which

re able to supply color through radiant energy absorption.
The presence of dyes in the discarded wastewater may be a

azard to public health and possibly to the ecosystem. The dis-
ard of colored compounds alters the water transparency, thus
mpeding the penetration of solar radiation and diminishing the
hotosynthetic activity of certain aquatic organisms. Therefore,
hese systems become unstable. The effects of the dye are sub-
tantial, in that even low concentrations of dye (less than 1 ppm)
an have significant effects on aquatic environments.

With respect to the color, the treatment, via biodegrada-
ion with the action of microorganisms is revested of much

omplexity in function of the toxicity conditions supported by
he microorganisms and in many situations the color does not
hange, due to the non-biodegradable nature of the dye. Shu
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t al. [1] point out that numerous dyes have complicated scent
tructures and are resistant to conventional biological treatment
ystems. Thus, the search for new processes and the optimization
f processes already in use for discoloration and degradation of
ndustrial effluents that contain synthetic dyes are necessary.

Muruganandham and Swaminathan [2] indicate the effi-
acy of advanced oxidation processes, particularly the binomial
V/H2O2 in the synthetic dye chromophore structure destruc-

ion.
Due to the large number of existing dyes it becomes very dif-

cult to determine a single method which can reduce the dyeing
rade and purify the waters from industrial processes, without
aking in account the dye structure and its relation to the vari-
bles that influence particularly their discoloration process. The
iscoloration process modeling due to the dye complex nature
nd their dependence of many factors and variables revests the
roblem with a high difficulty level, characterizing it as a multi-
le analysis system [3]. In this sense, neural networks appear as a
ultiple variable processes modeling and according to Pareek et

l. [4] it has been becoming very popular in the Chemical Engi-

eering area. The authors emphasize the capacity of recognition
nd reproduction of the cause–effect relations for multiple out-
ut and input systems and, thus, it is possible to map a A = f(c0,
H, t, V, T) relation where A is the absorbance dependent vari-
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Nomenclature

A predicted values of absorbance
[dye] dye concentration
f(s) transfer function
I network input variable relative importance
MSE mean square error
Purelin linear function
R Pearson correlation coefficients
S weight pondered sum
tansig sigmoidal tangent
T photo-oxidizing process operation time
T temperature
T real values of absorbance
VH2O2 hydrogen peroxide volume
w synaptic connections
X input vector
Y output vector

Greek letters
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The acid orange 52 dye structure is presented in Fig. 2.
Hydrogen peroxide (30% by weight) was used in all the

photo-oxidizing procedures. NaOH and H2SO4 (0.5N) were uti-
lized to obtain the reaction mean initial pH. Distilled water was
used to compose all the processes.
ε mean square error
λ maximum wavelengths

ble, c0 the dye initial concentration, t the time of operation,
the hydrogen peroxide volume added and T is the reaction

emperature.

. Artificial neural networks

The neural networks can be trained for complex mappings,
or the hidden layer elements learn to respond to characteristics
ound in the input, which refer to correlations of activities among
ifferent input spots, allowing an input information abstract
epresentation in the hidden layers. They have, the abstraction
bility, the generalization ability, classifying a complex pattern
orrectly, even if it does not belong to the network training set.
t is also vigorous and immune to little fails or noises present in
he inputs [5].

In the feedforward network (Fig. 1), the neurons are con-
ected to all posterior layer neurons, with the information from
n anterior layersuffering a ponderation by a (wij) weight that
s sent to all neurons of the next layer.

The networks with backpropagation training model refer to
he way the weights are adjusted. This way is also known as
eneral Delta Rule, based on the descending gradient optimiza-

ion and has been used in the majority of the works applied to
hemical processes [6].

Processing elements of the same layer act in parallel and
ayer-to-layer processing is sequential. The equations that
dministrate the feedforward processing are

Nk∑

(k)
j = w

(k)
0j

+
i=1

w
(k)
i x

(k−1)
i (1)

(k)
j = f (s(k)

j ) (2)
Fig. 1. Feedforward neural network model.

n this relation, x
(k)
i refers to the activating function input of k

ayer i element, s
(k)
j the pondered sum of the weights through

he inputs and w
(k)
ij refers to the synaptic connection weights at

he k layer j element input, where i is the connection index and
k is the k layer processing element number.

In the input, xi = x
(0)
i are X input vector components and, in

he output, yi = x
(m)
i are the y output vector components. The

euron input and output may be related by f (sj) = 1/(1 + e−sj )
ype transference function [7].

The purpose of training a network is the adjustment of its
eights in such a way that the application of a pattern produces

n output value and in this sense the General Delta Rule aims to
educe the network mean square error indicated by Eq. (3)

=
(

1

2

) m∑
j=1

(dj − yj)2 (3)

In Eq. (3), dj is the desired (real) value and yj is the value
btained by the network [5].

. Materials
Fig. 2. Acid orange 52 structural formula.
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The discoloration was evaluated as a function of the
bsorbance, measured every 5 min by removing 2 ml of sam-
le, through Femto 600 spectrophotometer, at the maximum
avelength λ = 463 nm. Each sample was analyzed three times

nd the average value was used as the value for each experi-
ent. Temperature and pH were monitored via pHmeter pG2000
ehaka.
The photo-oxidizing process was performed in a Germetec

PJ 463-1 plug-flow reactor, emitting at 254 nm, with 21 W low-
ressure radiation source (mercury vapor lamp). At the end of
ach experiment the system (for washing purposes) was filled
ith a slight acid solution and then recirculated. After discard

nd recirculation with distilled water, the system was disassem-
led and the reactor filled with 10% nitric acid solution for
leaning purposes.

The temperature for each experiment was kept constant
hrough Optherm DC1 thermostat, in Ti ± 2 ◦C, where Ti is the
emperature of each experiment, from 22 ◦C to 45 ◦C.

. Methodology

Initially a high dye concentration of 170 mg/l and a lesser
mount of hydrogen peroxide (1 ml) was established for a model
xperiment. This model experiment was performed up to the
oint where the absorbance came close to zero value, provid-
ng a time of 150 min, that was set as this variable amplitude
ange maximum value, being characterized a process inspection
odel. Table 1 presents the levels for which the proposed neural

etwork input variable dominium set was established.
The performance of the method indicated irrelevant results

n the reduction of color at absence of peroxide or radiation in
solated processes. The input variable matrixes presented to the
eural model are generically shown by

=

⎡
⎢⎢⎢⎢⎣

c1 pH1 t1 V1 T1

c2 pH2 t2 V2 T2

...
...

...
...

...

c218 pH218 t218 V218 T218

⎤
⎥⎥⎥⎥⎦ (4)

Aiming to verify the existence of this matrix outliers, or soli-
ary points of experiment, and in order to check the homogeneity
f the data, each sample “leverage” (Fig. 3) was estimated, which
s a measurement of how the sample influences the totality of

ata, and a small value identifies little sample influence over the
odel building.
Ferreira et al. [8] indicate that a critical value, or practical rule

or the identification of anomalous points, namely, considered

able 1
ariables level

ariable level Min Max

2O2 (ml) 2 15
dye] (mg/l) 3 170
H 2 12
emperature (◦C) 21 45
perating time (min) 15 150

3

%
[

Fig. 3. Distribution of training, validation and test sets.

oints with “leverage” higher than 3k/n, where n is the num-
er of samples (218) and k the number of main components or
atent variables, five of them (analysis of components in Matlab
nvironment) for the current work, resulting in a critical value
f 0.068807 and, therefore, some samples were discarded from
he set to be tested. Matlab prepcap (pn, 0.02) code transforms
he input set data matrix already normalized (pn), retaining only
he components that contribute with more than 2% in the input
ata set variance.

.1. Training, validation and test set selection

There are several methods for picking out the sets to be used
s training, validation and test sets. Kanduc et al. [9] establish the
andom selection, Kennard-Stone and Kohonen maps as some
f the possibilities to be employed.

In the present work, the data were worked by following the
asic algorithm given by:

. a clustering was established using K-Means algorithm. The
procedure followed the algorithm given by Martinez and
Martinez [10];

. after having determined the groups, a statistic test was used
to set the training validation and test groups, in such a way
that the training, validation and test sets pattern deviation
and mean value be equal to less than a value tending to
zero.

. The input variables (in number of 5) and the output variables
were processed in such a way that the mean value for each
vector containing the dependent and independent variables
be zero and the pattern deviation equal to 1, through the
pn = (p − meanp)/stdp Matlab environment algorithm, where
p is the input or output process matrix or data vector. In
Matlab environment, this normalization and the generated
set recording were performed by the command:
NORMALIZED SET GENERATION
pn, meanp, stdp, tn, meant, stdt] = prestd(p ′, t′);
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Table 2
Cluster distribution

Cluster Cluster samples number

1 57
2 58
3 51
4 52

Table 3
Correlation coefficients

Hidden layer
neuron number

R1 (training set) i2 (validation set) R3 (test set)

8 0.988 0.982 0.979
12 0.976 0.971 0.963
15 0.990 0.980 0.979
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Fig. 4. Diagram of implemented neural model.

Table 4
Input variable classification

Variable Importance (%)

H2O2 19.15
[dye] 21.44
pH 21.49
Temperature 16.97
Operating time 29.95

p
t

layer may be visualized in Table 4 “input” lines and the hidden
layer output neural weights in the “output” lines in this same
table. The notations b{1} and b{2} refer to the bias vectors.
6 0.991 0.986 0.981
0 0.990 0.984 0.977

The implementation of algorithm K-Means identified 4 clus-
ers, herein named as clusters 1–4 (Table 2).

.2. Neural network training

Table 3 presents the best results with a single hidden layer
opology, with the respective linear (R) correlation coefficients.
eural networks with a hidden layer and a sufficiently large
umber of neurons can interpret any input–output structure and
hat the hidden layer neuron number is determined in function
f the required accuracy.

All the configurations worked with the same 0.01 learning
ax and the training performed in 22 epochs.

The functions used in the network-training algorithm were
ansig and purelin (Matlab language) and the network weight
ctualization function was the Levenberg-Marquardt backprop-
gation (trainlm in Matlab language).

The function of error performance was MSE, or mean square
rror, and the performance learning function utilized was the
escending gradient (learngdm).

Some of the parameters can be visualized in the sequence of
ommands given by

et = newff(minmax(pn),[co1{‘tansig’, ‘purelin’}, ‘trainml’);
et.trainParam.epochs = 100; net.trainParam.goal = 0;
et.trainParam.1r = 0.01; % Learning tax
et.trainParam.show = 25; net.trainParam.mc = 0.9;
et.trainParam.1r inc = 1.05; net.trainParam.1r dec = 0.7;
net.trainParam.max perf inc = 1.04;

et.performFcn=‘MSE’;

he diagram of the network implemented may be seen in

ig. 4, where five input layer neurons related to the five net-
ork input variables, the 16 layer hidden layer and the input

ayer with a neuron corresponding to the absorbance output

ariable.

The linear activating function for the output layer is ade-
uate for continuous phenomena, as for instance the oxygen
iochemical demand or the absorbance degree in discoloration
Fig. 5. Linear regression test set.

rocess. The sigmoidal type transference functions are necessary
o introduce non-linearities in the network [11].

The IW{1,1} input neural weight matrix neural for the hidden
Fig. 6. Linear regression for validation set.
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Fig. 8. MSE variation percentage.

Table 5
Correlation coefficients under noise in the input variables

R1 R2 R3
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Fig. 7. Linear regression for training set.

In order to prevent overfitting problem, the training is inter-
upted if the error for the validation set becomes bigger than the
raining set error.

In function of the results obtained, hidden layer 16-neuron
onfiguration was chosen. Graphically, the results may be visu-
lized via Figs. 5–7.

. Neural weights interpretation

The level of influence of each input variable concerning the
odeling problem output variable may be obtained through the

eural weight matrix. In order to reach this goal, Pareek et al.
4] an algorithm proposed by Garson [12], based on the neural
eight partition.

j =
∑Nh

m=1

((∣∣∣wih
jm

∣∣∣ /
∑Ni

k=1

∣∣wih
km

∣∣) × ∣∣who
mn

∣∣)
∑k=Ni

k=1

{∑m=Nh

m=1

((∣∣wih
km

∣∣) /
∑Ni

k=1

∣∣wih
km

∣∣) × ∣∣who
mn

∣∣}

In the relation above mentioned, Ij is the j-esima input
ariable relative importance, Ni and Nh are the input and hid-
en neuron numbers, respectively and w stands for the neural
eights, and i, h and o superscripts refer to the input, hidden

nd output layers. The subscripts k, m and n refer, respectively
o the input, hidden and output layers.

As it can be seen in Table 4, all independent variables strongly
nfluence the absorbances of the discoloration process.

In order to confirm the value importance order classification
he pertubation method was applied. Gevrey et al. [13] indicates
he perturbation method for input variable analysis. This con-
ists of changes in the form xi = xi + δ, where xi is the selected
nput variable and δ is the variable change or noise. The method
onsists of attributing this noise and verifying the changes in the
utput yi variable. In this work, the mean square error was used
s comparison criterion.
The value δ = 10% attributed in each variable, maintaining the
ther constants, produced the graph shown in Fig. 8, where the
ajor importance of time of operation (t) is visualized, followed

y the reaction mean (pH) and hydrogen peroxide volume (V).

a
m
d
g

oise (0%) 0.978 0.977 0.947
oise (10%) 0.974 0.968 0.923

The factors that presented the minor MSE importance were
he dye concentration (Cdye) and temperature (T), keeping this
rder of importance. It is noticed the coincidence in the three
ost important factors in the Garson Partition and Pertubation
ethods, namely, time of operation, pH and hydrogen peroxide

olume.
In order to verify the stability of the values obtained through

arson Partition and Pertubation methods, the network trainings
ere repeated 10 times and the average contribution of each
ariable was calculated.

By comparing the results obtained through Garson Partition
nd Pertubation methods, an inversion is noticed concerning
he dye concentration and temperature variables behavior, but
quivalence was observed in the other variables, maintained the
evels of importance.

A 10% noise value is attributed to the input data matrix aiming
o verify the network capacity to self-adapt and prevent small
ailures or measurement errors, and Table 5 shows the network
daptation capacity to these noises, with the mean quadratic
rrors, and the linear correlation coefficients for training set (R1),
alidation set (R2) and test set (R3).

. Conclusions

An acid orange 52 dye discoloration neural model, with
ydrogen peroxide, activated by UV radiation, was evaluated
oncerning five factors. The neural network was trained with
18 samples and utilized a configuration with a hidden layer
nd 16 neurons in this layer, presenting high correlation coef-
cients for training, validation and test sets (>0.98), verifying

he network prediction capacity with high accuracy level. The
nput layer is formed by five variables: dye concentration, ini-
ial pH, time of operation, hydrogen peroxide volume at 30%

nd temperature. The study of the variable influence level deter-
ined that the input variables that influence the acid orange 52

iscoloration process are time of operation, initial pH and hydro-
en peroxide volume. However, temperature and concentration
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f the dye should not be neglected, as they also appear to be
ignificant factors.
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[3] Guimarães, O.L. Cobra, H.O.Q. Aquino, I.S. Oliveira, D.N. Villela, H.J.
Izário, A.F. Siqueira, M.B. Silva, Prediction through neural networks of the
residual of hydrogen peroxide used in photo-Fenton processes for effluent
treatment, Chem. Eng. Technol. 30 (2007) 1134–1139.
[4] V.K. Pareek, M.P. Brungs, A.A. Adesina, R. Sharma, Artificial neural net-
work modeling of a multiphase photodegradation system, J. Photochem.
Photobiol. A: Chem. 149 (2002) 139–146.

[5] C. Loesch, S.T. Sari, Neural Networks Artificial Beddings and Models,
Publishing Company of the Furb, 1996.

[
[

neering Journal 140 (2008) 71–76

[6] A.F.M. Silvares, Mathematical Modeling of Photochemist Reactors
Applied to the Treatment of Effluent, Polytechnical School of the University
of São Paulo, 2001.

[7] A. Durán, J.M. Monteagudo, M. Mohedano, Neural networks simulation
of photo-Fenton degradation of reactive blue 4, Appl. Catal. B: Environ.
65 (2006) 127–134.

[8] M.C.M. Ferreira, A.M. Antunes, M.S. Melgo, P.L. Volpe, Chemometrics
I: Multivaried Calibration, a Tutorial, vol. 22, Quı́mica Nova, 1999.

[9] R.K. Kanduc, J. Zupan, N. Madcen, Separation of data on the training
and test for modelling: a case study for modelling of five colour prop-
erties of a white pigment, Chemometr. Intell. Lab. Syst. 65 (2003) 221–
229.

10] W.L. Martinez, A.R. Martinez, Computational Statistics Handbook with
MatLab, ChapMan & Hall/CRC, 2002.
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